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Abstract 

The tetranuclear heteroleptic arylcopper aggregate [Cu4R2Br 2] (R = C6H3(CH2NMee)2-2,6) reacts with the organometallic 1,4-diyne 
[(~/5-CsH4SiMe3)2Ti(C------CSiMe3)2], 1, to give equivalent amounts of known [1 - CuBr], and the novel 1,1-bis-metalla alkenyl complex 
[(r/5-CsH4SiMe3)2Ti(C---CSiMe3){/x-C=C(SiMe3)(R)}Cu], 6, that is the result of intramolecular addition of a Cu-C bond across the 
alkyne triple bond. 
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Recently, we have reported that monomeric Cu~R 
entities (R = alkynyl [1] or aryl [2]) can be stabilized by 
using the chelating effect of the organometallic 1,4-di- 
yne [('r/S-CsH4SiMea)2Ti(C~CSiMe3)2] (1) [3] in the 
form of [1. MR]. In the latter species both alkyne 
groups coordinate in an ~/2-fashion to the copper or 
silver atom, which is additionally ,/t-bonded to the 
ligand R, resulting in a trigonal planar environment of 
the group 11 metal centre. The stability of the com- 
plexes [1- CuR] (R = alkynyl [1], or aryl [2]) is strongly 
dependent on the nature of R and we have already 
reported that alkynylcopper complexes [1. CuC---CR] 
undergo nucleophilic substitution of one of the trimeth- 
ylsilyl groups of the Ti(C--=CSiMe3) 2 entity to afford 
species with a Ti-C---C-Cu entity [1]. 
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In ongoing studies we have isolated and character- 
ized arylcopper complexes [1. CuR] (R = C6HEMe 3- 
2,4,6 (5a) [2], C6H4Me-4 (5b), C6H4OMe-4 (5c), 
C6HgNMe2-4 (5d), C6H 5 (5e)) [4] in which the aryl 
group has either Me or H substituents in the ortho-posi- 
tion. During these studies we have now found that 
attempted preparation of the analogue where R is 
C6Ha(CH2NMe2)2-2,6 does not lead to the expected 
species [1. Cu{C6Ha(CH2NMe2)2-2,6}], 5f, but instead 
to an unusual isomeric complex with a unique Ti{ ~Z:l~ 1- 
C--C(SiMea)(R)}Cu unit. The synthesis and structural 
characterization of this 1,1-b is -meta l la  alkenyl species 
are the subject of this communication and a probable 
mechanism for its formation by an intramolecular rear- 
rangement of 5f is outlined. 

Reac t ion  of  1 wi th  [CU4REBr2]  (R = 
C6H3(CHENMe2)2-2,6) , 2 [5], in a 4 :1  molar ratio in 
Et20 at 25°C results in the clean formation of a unique 
species characterized as [(~/5-CsH4SiMea)2Ti- 
(C=CSiMe3){/z-C=C(SiMea)(R)}Cu], 6, [6] and known 
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Scheme 1. Synthesis of the 1,1-his-metalla alkenyl complex 6; (75-C5 H 4 SiMe3)2 Ti is abbreviated as [Ti]. 

[1 • CuBr] [7] (Scheme 1). After removal of the volatiles 
from the reaction mixture, complex 6 can be extracted 
with pentane (in which [1-CuBr] is not soluble), and 
further work-up and recrystallization from Et20 at 
- 2 0 ° C  affords 6 in 86% yield as orange to red crystals 
which are stable in air for several hours. Complex 6 is 
soluble in most organic solvents to afford solutions 
which exhibit significant decomposition after exposure 
to air for 1 h. 

An alternative and also virtually quantitative synthe- 
sis of 6 comprises the 2 :1  molar reaction of the 
monomer ic  copper  arenethiolate complex  [1 • 
CuSC6H4CH2NMe2-2], 3 [7], with [LiC6H3(CH z 
NMe2)2-2,612, 4 [8]. A similar work-up procedure to 
that already described can provide 6 in 97% yield. 

To assist in the identification of 6, a single crystal 
X-ray structure determination of this complex has been 
carried out [9]. The crystal structure shows the unit cell 
to contain two crystallographically independent, but 
chemically identical, heterobimetallic molecules [(,/5_ 
C 5 H 4 SiMe 3)2Ti(C= CSiMe 3){/x-C = C(SiMe 3)(C 6 H 3- 
(CH2NMe2)2-2,6)}Cu] and Fig. 1 shows one of these 
molecules together with the adopted atom numbering 
scheme. 

Each molecule of 6 contains a (r/LC5HaSiMe3) 2 Ti 
unit that is r/i-bonded to the terminal carbon atom of a 
C-=CSiMe 3 group and of a C=C(SiMe3)(C6H3(CH 2 
NMea)2-2,6) grouping which, through being also ~TLC - 
bonded to a copper atom, is present as a bridging 
1,1-bis-metalla alkenyl unit. Within this 1,1-bis-metalla 
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Fig. 1. PLLrI'ON drawing of one of the two crystallographically independent residues of 6 with the exclusion of the hydrogen atoms and with the 
• o o adopted atom labelling scheme• Selected bond dzstances (A) and bond angles ( ) [the bond lengths and angles in square brackets are for the 

equivalent bonds in the other residue]• Til l . . .  Cull 2.639(4) [2.635(4)], Cu11-Cll 2.031(14) [2.042(16)], Cu11-C181 1.972(16) [1.967(15)], 
Cu11-C191 2.236(18) [2.209(16)], Cull-N11 2.027(12) [1.996(13)], Cll-C21 1.357(19) [1.35(2)], C181-C191 1.24(2) [1.24(2)], Ti11-Cll 
2•044(14) [2.026(15)], Ti11-C181 2.153(16) [2.149(16)]; Cu11-Cll-Till 80•7(5) [80.8(6)], Ti11-Cll-C21 160.6(11) [163.0(13)], Cu11-Cll- 
C21 117.6(10) [115.8(12)], Till-C181-C191 163.7(14) [163.2(13)], C181-C191-Si21 163.1(16) [161.4(14)], C11-Till-C181 95.8(6) [96.1(6)]. 
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alkenyl bridge the bond lengths of the metal to bridging 
carbon atom (Cll)  are 2.044(14) .~ for T i l l - C l l  and 
2.031(14) ,~ for C u l l - C l l .  The Cl l -C21 bond length 
of the 1,1o-bis-metalla alkenyl function amounts to 
1.357(19) A, compatible with this being a C=C double 
bond; it is significantly longer than the 1.24(2) .~ bond 
length of the C181-C191 triple bond of the C----CSiMe 3 
ligand. 

The copper atom in 6 attains a trigonal planar geome- 
try through additional "02-bonding to the C----CSiMe 3 
group and coordination of the N-donor atom (Nll)  of 
one of the ortho (dimethylamino)methyl substituents on 
the aryl ring of the C=C(SiMe3)(C6H3(CH2NMe2) 2- 
2,6) grouping, whereby a 7-membered chelate ring, 
C u l l - C l l - C 2 1 - C 6 1 - C 7 1 - C 8 1 - N l l ,  is formed; the 
second CH2NMe 2 group does not coordinate. Probably 
as a result of strain in the 7-membered chelate ring there 
is a slightly distorted trigonal planar geometry of the 
copper atoms (sum of the angles is 356.6 ° ) which is 
illustrated by the angles C l l - C u l l - N l l ,  N l l - C u l l -  
midl, and m i d l - C u l l - C l l  of 109.0(5), 127.7(6), and 
119.9(6) °, respectively (midl is defined as the midpoint 
of C181-C191). The C u l l - C l l - T i l l  bridge angle of 
80.7(5) ° in 6 is acute and the plane of the /x- 
C=C(SiMe3)(R) alkenyl unit is tilted 23.3(8) ° with 
respect to the T i - C l l - C u  plane. Similar features are 
present in several 1,1-bimetalla alkene complexes and 
reported M - C - M  angles (M = transition metal) are in 
the range of 82.3 to 90.0 ° [10]. 

The tilting of the /x-C=C(SiMe3)(R) entity with 
respect to the T i - C l l - C u  plane is likely to result from 
steric hindrance of the alkene SiMe 3 group with one of 
the @-C5H4SiMe 3 ligands. The positioning of the trig- 
onal copper atom and the alkene moiety is consistent 
with a o-bond between Cul l  and C l l  ( C u l l - C l l - C 2 1  
is 117.6(10)°), while the angle T i l l - C l l - C 2 1  of 
160.6(11) ° indicates that the T i l l - C l l  interaction may 
be best described as a bent bond in which the orbitals 
involved are positioned outside the T i l I - C l l - C u l l  
triangle. Similar bonding schemes were obtained from 
Extended Hiickel calculations on /x-methylene transi- 
tion metal compounds where the bonding is referred to 
as similar to the Walsh-orbitals for cyclopropane [11]. 

The low temperature 1H NMR spectrum (237 K) of 6 
consists of three different aryl protons, seven singlets 
for the C5H 4 protons (ratio 1 : 1 : 1 : 1 : 1 : 1 : 2), one AB 
pattern and one singlet for the benzylic protons, three 
singlets (ratio 2 :1 :1 )  for the dimethylamino protons 
and four singlets for the SiMe 3 protons. This is consis- 
tent with an asymmetric molecule, as is found in the 
solid state structure (Fig. 1). 

Complex 6 is unique as it is the first mononuclear 
alkenylcopper species as well as the first example of a 
1-metalla-l-copper alkene species; in the literature there 
are only two other structurally characterized alkenylcop- 
per compounds, i.e. [Cu4{(4-MeC6H4)-(Me)C=C - 

(C6H4NMe2-2)}2(R)2] (R=C6H4NMe2-2 , Br) [12]. 
Complex 6 can be clearly seen as the result of a formal 
addition of a Cu-R (R = C6H3(CH2NM%)2-2,6) moi- 
ety across a TiC~CSiMe 3 unit. This type of reaction of 
organocopper reagents is a well described reaction in 
organic synthesis [13]. 

In the synthesis of 6, either by reaction of 1 with 2 or 
by reaction of 3 with 4, it is likely that the coordination 
complex [1- Cu(C6H3(CHzNMe2)2-2,6)], 5f, is formed 
as intermediate, since the arylcopper complexes 5a-5e 
could be prepared by similar synthetic procedures 
[1, 2, 3]. However, in the course of this study the 
intermediate coordination complex 5f could not be iden- 
tified. Moreover, the bis(r/Z-alkyne)copper(r/1-mesityl) 
complex [1 • Cu{r/1-C6H2Me3-2,4,6}], 5a, without coor- 
dinating ortho-substituents, is stable in the solid state up 
to 124°C [2], whereas the complexes [1. CuR] (R = 
C6HaMe-4) (5b), C6H4OMe-4 (5c), C6H4NMe2-4 
(5d), C6H 5 (5e)) [4] which completely lack ortho-sub- 
stituents rearrange in solution at temperatures around 
0°C to afford the corresponding addition products [(@- 
C5H4SiMe3)2Ti( C---CSiMe3){/X-(C=C(SiMe3)(R)}Cu]. 
To help identify the latter unstable addition products, 
benzene solutions of 5b-5e were heated for 1 h at 
reflux, followed by acidic hydrolysis and GC-MS analy- 
sis of the resulting volatiles. From these experiments the 
alkyne HC--CSiMe 3 (resulting from the intact 
TiC-CSiMe 3 moiety), the alkene H2C=C(SiMe3)(R) 
(from the Ti{/X-C=C(SiMe3)(R)}Cu entity), and 
trimethylsilyl-cyclopentadiene were identified as the 
major organic products. Both the isolation of complexes 
5b-5e below 0°C and the observed addition reaction in 
5b-5e [4], suggests that the addition reaction proceeds 
intramolecularly within the pre-formed species [1 • CUR]. 
The intramolecular coordination of the (dimethyl- 
amino)methyl substituents in complex 6 is crucial for its 
isolation, since absence of this coordination (i.e. in 
complexes 5b-5e) merely leads to decomposition of the 
corresponding addition products. 

It has been shown that the use of the organometallic 
1,4-diyne, 1, yields monomeric organocopper species 
[1. CuR] which can be studied in detail, but when 
combined with the organic diarylamine ligand 
C6H3(CH2NMe2)2-2,6 also gives access to a novel 
class of alkenylcopper compounds. Our studies on 
species [1. CuR] in this way form a practical and 
unique way of investigating the reactivity profile of 
mononuclear entities CuR and we have already estab- 
lished that both addition (R = aryl) and substitution 
(R = alkynyl) pathways may be encountered. 
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